Credit risk and incomplete information: linear filtering and EM parameter estimation

نویسنده

  • Claudio Fontana
چکیده

We consider a reduced-form credit risk model where default intensity and interest rate are linear functions of a not fully observable Markovian factor process. We determine arbitragefree prices of OTC products coherently with information from the financial market, in particular yields and credit spreads and this can be accomplished via a linear filtering approach coupled with an EM -algorithm for parameter estimation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit risk and incomplete information: filtering and EM parameter estimation

We consider a reduced-form credit risk model where default intensities and interest rate are functions of a not fully observable Markovian factor process, thereby introducing an information-driven default contagion effect among defaults of different issuers. We determine arbitrage-free prices of OTC products coherently with information from the financial market, in particular yields and credit ...

متن کامل

Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values

Estimating the mean and the covariance matrix of an incomplete dataset and filling in missing values with imputed values is generally a nonlinear problem, which must be solved iteratively. The expectation maximization (EM) algorithm for Gaussian data, an iterative method both for the estimation of mean values and covariance matrices from incomplete datasets and for the imputation of missing val...

متن کامل

Filtering and Incomplete Information in Credit Risk

This chapter studies structural and reduced-form credit risk models under incomplete information using techniques from stochastic filtering. We start with a brief introduction to stochastic filtering. Next we cover the pricing of corporate securities (debt and equity) in structural models under partial information. Furthermore we study the construction of a dynamic reduced-form credit risk mode...

متن کامل

Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: the continuous-time case

This paper is concerned with maximum likelihood (ML) parameter estimation of continuous-time nonlinear partially observed stochastic systems, via the expectation maximization (EM) algorithm. It is shown that the EM algorithm can be executed efficiently, provided the unnormalized conditional density of nonlinear filtering is either explicitly solvable or numerically implemented. The methodology ...

متن کامل

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008